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• Multi-resolution processing (MRP) update

• Discrete mitigation

• Calibration approaches supporting data pre-whitening

• Functions from site-specific predictions
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• Benefits
– Integration gain
– Array calibration
– Discrete removal
– Arrest range walk of both 

clutter and movers
– Training advantages

• Many localized samples
• TSD resistance
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MultiMulti--Resolution Processing SummaryResolution Processing Summary

• Applications
– Detect very slow movers
– Operate in severe heterogeneity

• Mountains, urban centers, etc.
– Track movers through clutter notch

• KA Applications
– Check short-dwell array calibration
– Confirm land type & use
– Register roads

Exploit SAR-like mo-comp, focusing, and image 
formation techniques to make long-dwell STAP viable
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Effect of Mover Turning RadiusEffect of Mover Turning Radius
• PFA arrests range walk
• Target along-track 

motion generates a 
quadratic phase error 
(QPE)
– Apply bank of QPE FIR 

filters to complex STAP 
detections

• Gently turning target 
also generates QPE
– Can be as significant as 

linear motion QPE
– 100 m/s radar, 1 m/s 

target, 100 km range, 
radius = 500 m
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• Target acceleration and higher 
order motion limit CPI
– PDI over sub-CPIs or multiple-bins
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Multiple SubMultiple Sub--CPIs CPIs vsvs Multiple Doppler BinsMultiple Doppler Bins
Issue Multiple Sub-CPIs Multiple Doppler Bins

Coherent Integration of Non-
maneuvering Targets

Coherent output from each 
sub-CPI; FFT over sub-CPIs

Output contained within a single 
Doppler/cross-range bin

Post Detection Integration 
(PDI)

Sum power over sub-CPIs Sum power over cross-range bins

More Samples for Local 
Training 

Each sub-CPI contributes a 
snapshot for each range bin; 
PFA ensure clutter stationarity,

If (1) dwell is long (local angle-
Doppler coupling is approximately 
constant), or (2) raw data is 
resampled in slow-time to co-
register channels, then performs 
like sub-CPI training

Quadratic Phase Correction 
for Along-Track Target Motion

Quadratic phase weight 
across sub-CPIs

Low order quadratic phase filter

Target with Multiple Scatterers Target fading; Swerling 2 
target statistics – PDI

Target scatterers sub-resolved in 
cross-range bins –PDI

Maneuvering Target Higher-order phase function 
over sub-CPIs – PDI

Target smeared in cross-range –
PDI 
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• Many operations can be performed either across multiple sub-CPIs or over multiple 
Doppler bins, with similar results

• Notional design uses multiple Doppler bins, to avoid the IFFT back to slow time
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Training on SubTraining on Sub--CPIs versus Doppler BinsCPIs versus Doppler Bins
• Notional airborne X-band radar
• JDO is full STAP

– 4 x 512 DoFs
– Ripples due to angle-aliased 

clutter (PRF > DPCA PRF)
• EFA uses all channels and 3 

Doppler bins
• Sub-CPI processing

– 64 pulses each
– Output of each CPI coherently 

combined to recover SNR
– Overlapped averaging of 64-

pulses sub-CPIs provides 
enough samples for full space-
time processing

• Bin averaging incurs slight 
additional loss due to drift in 
clutter angle versus Doppler
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EFA, 7 Bin Averaging

• Training over Doppler bins incurs 
additional 0.5 dB loss

• Sub-CPI averaging does not degrade 
EFA performance

• Overlapped averaging of sub-CPIs 
nears full JDO performance
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MRP SummaryMRP Summary

Multi-Channel 
Range-Doppler 

Data

Discrete
Suppression

Array
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Short-
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GMTI
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To
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Point

SAR
Imaging

(PFA)

⇒ ⇒ Increasing Dwell Time ⇒ ⇒

Multiple
Doppler-Bin

Training

Multi-Bin
Post-Doppler
STAP (EFA) Along-Track 

Target Motion
Compensation

CFAR
Multiple

Doppler-Bin
PDI

CFAR
Very 
Slow 
Moving 
Targets

Fast or 
Maneuvering 
Targets

Coherent 1-D FIR filtering over Doppler bins 
to compress quadratic phase response

Noncoherent low-pass filtering over Doppler 
bins to recover smeared target energy

Long dwells or slow-time 
resampling ensures local bins have 

similar angle-Doppler coupling
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• Multi-resolution processing (MRP) update
– Target acceleration limits CPI length
– Two-path architecture is the consequence

• Coherent integration for very slow, stable movers
• Doppler bin PDI for fast, maneuvering targets

– Overlapped sub-CPI averaging an interesting alternative

• Discrete mitigation

• Calibration approaches supporting data pre-whitening

• Functions from site-specific predictions
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Processing SolutionsProcessing Solutions
Discretes are a 
change in the 
covariance

1.  Include CUT in training (SP)
Demonstrated on APTI data

2.  PVT (ER)
Demonstrated on Tuxedo data

3.  Null short-dwell data (KA)
3a.  Locations derived from SAR imagery

Demonstrated on APTI data
3b.  Locations derived from map data

Difficult to do with confidence

4.  CLEAN long-dwell imagery (KA)
MRP architecture, FOPEN results

5.  CLEAN short-dwell AMF (ER)
See following presentation……

Discretes 
are a shift 
in the mean

SP = Signal 
Processing

KA = Knowledge-
Aided

ER = Expert 
Reasoning
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CLEAN in RangeCLEAN in Range--DopplerDoppler
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• Remove discretes from data prior to STAP
• False alarms reduced, but computationally intensive
• Why not remove only those discretes that “matter”???

Discrete Locations Discrete RCS vs. CLEAN Iteration
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AMF AMF CLEANingCLEANing
• Discretes are manifested as detections in two ways:

– As very strong returns on the clutter ridge
– As false alarms due to sidelobes in range-angle-Doppler

• Iterative procedure
– 1.  Form angle-Doppler detection map (e.g., AMF) for each range bin
– 2.  Find strongest detection
– 3.  Remove its PSF from detection map

• The PSF is spatially-variant in the AMF domain
• We must remove PSF from the data, and regenerate the AMF

• After iterating we have
– A detection map of residual noise (discard)
– A collection of point-target returns

• Some of these are discretes on the clutter ridge
• Some of these are movers off the clutter ridge
• False alarms due to discrete sidelobes are avoided
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CLEANing CLEANing DetectionsDetections

power maximumwith 
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Contrasting Two CLEAN ApproachesContrasting Two CLEAN Approaches
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• Advantages of CLEANing in the detection domain
– Works at low to moderate resolutions
– Superior parameter estimates (angle-Doppler-amplitude-phase)
– Requires far fewer CLEAN iterations

• Disadvantages
– Detection map must be regenerated after each CLEAN iteration
– Unless covariance estimate also modified, over-nulling can still occur



slide 14

DARPADARPA

Robust MoverRobust Mover--Discrete TestsDiscrete Tests
1. Determine if vmax is on or off 

the clutter ridge
• Exploits knowledge of the clutter 

ridge angle-Doppler support

2. INR
• Measures loss on target due to 

interference cancellation

3. SNR
• Unit response against thermal 

noise
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Airborne FireAirborne Fire--Control GMTI ExampleControl GMTI Example

• Radar characteristics
– X-band
– 8-channel APTI-type circular array
– MPRF operation
– Scanned off array normal by 60°

• Interference
– Clutter, thermal noise
– CNR 25-30 dB
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• AMF/MLE output
– Clutter suppressed
– Single target at (60°, 0 Hz) clearly 

visible
• Measured SINR = 19.5 dB

– Consistent with true SNR = 27 dB 
and JDO loss = 7 dB

SINR loss versus 
azimuth angle 
and Doppler (dB)

AMF/MLE output 
for a single data 

snapshot (power)
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Adding Discretes to TargetAdding Discretes to Target--OnlyOnly
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• MVDR image of clutter
• Target-only  MLE location 

(angle and Doppler) and metric 
estimates (INR = 6 dB, SNR = 
26 dB) close to actual values

• AMF/MLE with two discretes
– Appear in MVDR image as o

• Discretes and their sidelobes are 
very strong in the detection map
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CLEAN Iterations on DiscretesCLEAN Iterations on Discretes
AMF Output / MLE Cost Surface (Power)
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AMF CLEAN ResultsAMF CLEAN Results

• Both discretes were 
properly located and 
removed
– INR & SNR estimates 

are accurate
– High INR and SNR 

levels suggest returns 
are discretes

• Target was detected 
and properly located
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OutlineOutline

• Multi-resolution processing (MRP) update

• Discrete mitigation
– “CLEAN” them from the data using detection information
– Fewer CLEAN iterations required
– Requires (at least partial) regeneration of detection map

• Calibration approaches supporting data pre-whitening

• Functions from site-specific predictions
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Array Error Problems; Calibration SolutionsArray Error Problems; Calibration Solutions
Problem

1. Target mismatch in STAP
– STAP fully compensates for 

array errors on interference
– Losses incurred due to 

mismatched steering vector
2. Deterministic processing errors

– STAP too hard (heterogeneity)
– Instead, do DPCA + “time slip”
– Array & geometry errors limit 

deterministic clutter cancellation
3. KA-STAP implementations

– Measured and predicted signals 
differ by array errors

– Statistics:  colored-loading (CL), 
pre-whitening (PW), etc.

– Data:  SCHISM

Solution
1. Cal-on-clutter

– Either measurements corrected 
or steering vectors modified

– NOTE:  For moderate error 
levels mismatch losses are small

2. Cal-on-clutter
– Correction of angle-dependent 

“errors” tantamount to aligning 
channel records in time

– Like reduced dimension STAP!
3. Cal-on-clutter

– Statistics: correct measurements 
or “corrupt” predictions

– Data:  correct measurements
– Our emphasis in this study
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Array Calibration for KAArray Calibration for KA--STAPSTAP
• Two error categories

1. Angle-independent errors
• Complex channel gains
• No effect on clutter rank

2. Angle-dependent errors
• Subarray phase center locations, etc.
• Increase clutter rank

• This study concentrates on angle-independent errors
– Short dwell constraint imposed:  limited DoFs, few Doppler 

bins over clutter, finite data overlap between channels, etc.
– In our experience, resolving angle-independent errors gets 

you most of the way there
– For KA-STAP, even small errors can limit cancellation…..
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AngleAngle--Independent Errors and CancellationIndependent Errors and Cancellation
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• 30 dB requirement:
– 2° phase error or less
– 0.025 magnitude error or less

We evaluated a number of array 
estimation techniques, including two 
developed specifically for short-dwell 
data sets…
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ChannelChannel--Pair CalibrationPair Calibration
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• Adjacent channel pairs show most overlap in phase history
• Ideally, any phase difference due to channel mismatch only
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ChannelChannel--Pair RangePair Range--Doppler TechniqueDoppler Technique

• Exploit presumed linear phase among channels over Doppler
• Deviation from zero intercept is due to error

All

0°

APTI Data:  
Range-Doppler 
phase maps w.r.t. 
channel #1

Consider two channel pairs:

fd (=angle)

φ Error-Free

W/ Errors

je εφ

Est. & conj.
Phs. slope

blue x green

Repeat on
Successive Pairs

Find Doppler
Centroid

Cross-Correlate,
Find Linear Phase

Xst

Remove Linear Phase,
Find Complex Gain

e(k)

e

Channel
Pair

Much like the 
baseline 

channel-pair 
technique
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Parametric Results (RMS Errors)Parametric Results (RMS Errors)
Set-Up Channel Pair Range-Doppler

16 pulses, 128 bins 1.48°, 27x10-3

0.65°, 23x10-3

1.07°, 25x10-3

0.47°, 22x10-3

1.92°, 26x10-3

16 pulses, 512 bins 1.33°, 22x10-3

32 pulses, 128 bins 1.23°, 19x10-3

32 pulses, 512 bins 0.79°, 15x10-3

• Non-DPCA and ICM• Assumptions
– Airborne (not space-based) X-band clutter ridge slope
– Short-dwell GMTI (as few as 16 pulses)
– ULA, subarrays are identical
– Homogeneous clutter; moderate to high CNR
– Moving target power is negligible
– Initial RMS errors uniform over 10° and 0.1 (0°+20° & 1.0+0.2)

• Both techniques meet the 30 dB cancellation requirement 
with 16 pulses and 128 range bins

• +2° scan and +2° crab
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FOPEN AngleFOPEN Angle--Doppler Doppler PSDsPSDs
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• Raw data; 12-channel, 480-pulse
– Dramatic variation in amplitude 

and phase between channels
– No discernible clutter ridge

• Both channel pair techniques 
yielded a clutter ridge
– Range-Doppler processing 

(shown) a little better



slide 27

DARPADARPA

Frequency Equalization ResultsFrequency Equalization Results
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• MVDR spectrum
– After range-Doppler channel-pair 

calibration

• After frequency equalization 
across channels
– Mostly small time delay 

differences between channels 
(fractions of a range bin)
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OutlineOutline

• Multi-resolution processing (MRP) update

• Discrete mitigation

• Calibration approaches supporting data pre-whitening
– Developed methods appropriate for short CPIs

• Exploit data redundancies in adjacent channels
– Simulation results met 30-dB cancellation requirement
– Applied to FOPEN data set

• Functions from site-specific predictions
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FOPENFOPEN--Prediction ComparisonPrediction Comparison

Fractional Doppler Frequecy
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• Differences
– Near-range saturation of radar front end
– RFI
– Doppler offset corresponding to 2.24° velocity vector difference

FOPEN Data, 128 Pulses Prediction, 128 Pulses
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RangeRange--Doppler Map ComparisonDoppler Map Comparison
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• Range-Doppler image is for full 480-pulse CPI
• NLCD data is sufficient to designate large “no-return” areas
• (Note that the angle-Doppler function is non-linear at large angles) 
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Shadowing PredictionShadowing Prediction

• Digital Elevation Model (DEM)
– Provides shadowing information (and grazing angle)

• Flight test data needed to validate shadowing predictions
– KASSPER ‘03:  Lockheed-Martin showed good shadowing match 

with Utah Tuxedo data
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OutlineOutline
• Multi-resolution processing (MRP) update

• Discrete mitigation

• Calibration approaches supporting data pre-whitening

• Functions from site-specific predictions
– Masks for STAP and CFAR training

• Low/No-return areas
• Shadowed areas mask

– TBD
• High-return mask (urban areas)
• Road scoring

Special thanks to Marshall Greenspan 
and crew at Northrop Gruman 
Electronic Systems for providing 
FOPEN flight test data and granting us 
permission to publish results
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BackBack--Up and Spare MaterialUp and Spare Material



slide 34

DARPADARPA

KA STAP ArchitectureKA STAP Architecture
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• Constraints
• Algorithm
• Cal Info

Env. dBase

PDIPDI

INU/GPS – platform & antenna
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Estimated Clutter Properties
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Non-Stationarity

Compensate
Angle-Doppler

Non-Stationarity
CFARCFARkx

(
kx

(
kx ˆ

kR

INU/GPS – platform & antenna
Expert 

Reasoning
Training Rules

KA Pre-Filter
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Channel Pair TechniqueChannel Pair Technique

Neighboring Channel Pair

Doppler Phase 
Difference

Power

• Development
– Evaluate each adjacent channel pair

• 1-2, 2-3, … 
– Form spatial correlation matrix

• 2-by-2
• Over all data (pulses, ranges)

– Imbalance = correlation ratios, or entries 
in maximum eigenvector

• Technique limitations
– Plus and minus phase contributions on 

mainbeam skirts cancel in the limit, not 
so with finite samples

– Poor performance if clutter fills Doppler 
space (i.e., rapidly decorrelates)

Repeat on
Successive Pairs

Xst

Eigen Decomp,
Find Max Vector

e(k)

e

Channel
Pair

Rs
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RangeRange--Doppler ProcessingDoppler Processing

Neighboring Channel Pair

Doppler Phase 
Difference

Power

• Why is the Doppler centroid required?
– Linear phase must be removed with phase 

center at the center of the mainbeam
– Otherwise, phase bias is introduced

• If Doppler centroid known, this method 
is powerful, with very low RMS error 
– Once linear phase is removed, all clutter 

energy is available to estimate channel gain
– Also, error goes down with increasing clutter 

power
– However, in general 

the Doppler centroid 
calculation is 
required, and 
introduces error

Repeat on
Successive Pairs

Find Doppler
Centroid

Cross-Correlate,
Find Linear Phase

Xst

Remove Linear Phase,
Find Complex Gain

e(k)

e

Channel
Pair
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Yegulalps’ Calibration TechniqueYegulalps’ Calibration Technique
• Multi-channel calibration (MCC)

– Based on multi-channel Wiener filter theory

• Procedure
– Generate Doppler-domain data
– Examine spatial response in each range-Doppler cell
– Clutter (expected) to fall along a ridge
– Ideal spatial response s, measured response m

• s is linear phase (DFT vector)
• m is modified measurement (first channel set to 0-phase)

– Model:  m = Ds

• Examine all range-Doppler cells and estimate D
– M = DS
– Estimated D = Mpinv(S) = MSH(SSH)-1
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Yegulalp’sYegulalp’s Calibration ResultsCalibration Results
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• Left is baseline range-Doppler calibration, right is MCC
• Reasonable MCC results required careful application of 

weighting on reference vectors (as a function of angle) to 
lower the gain at large angles
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